Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks

نویسندگان

  • David Enke
  • Manfred Grauer
  • Nijat Mehdiyev
چکیده

Stock market forecasting research offers many challenges and opportunities, with the forecasting of individual stocks or indexes focusing on forecasting either the level (value) of future market prices, or the direction of market price movement. A three-stage stock market prediction system is introduced in this article. In the first phase, Multiple Regression Analysis is applied to define the economic and financial variables which have a strong relationship with the output. In the second phase, Differential Evolution-based type-2 Fuzzy Clustering is implemented to create a prediction model. For the third phase, a Fuzzy type-2 Neural Network is used to perform the reasoning for future stock price prediction. The results of the network simulation show that the suggested model outperforms traditional models for forecasting stock market prices. © 2011 Published by Elsevier B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods

This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

A Technique to Stock Market Prediction Using Fuzzy Clustering and Artificial Neural Networks

Stock market prediction is essential and of great interest because successful prediction of stock prices may promise smart benefits. These tasks are highly complicated and very difficult. Many researchers have made valiant attempts in data mining to devise an efficient system for stock market movement analysis. In this paper, we have developed an efficient approach to stock market prediction by...

متن کامل

Predicting stock prices on the Tehran Stock Exchange by a new hybridization of Fuzzy Inference System and Fuzzy Imperialist Competitive Algorithm

Investing on the stock exchange, as one of the financial resources, has always been a favorite among many investors. Today, one of the areas, where the prediction is its particular importance issue, is financial area, especially stock exchanges. The main objective of the markets is the future trend prices prediction in order to adopt a suitable strategy for buying or selling. In general, an inv...

متن کامل

Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models

Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011